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Abstract

We derive ground state wave functions of superconducting instabilities on the
honeycomb lattice induced by nearest-neighbor attractive interactions. They
reflect the Dirac nature of electrons in the low-energy limit. For the order
parameter that is the same irrespective of the direction to any of the nearest
neighbors we find weak pairing (slowly decaying) behavior in the orbital part
of the Cooper pair with no angular dependence. At the neutrality point, in the
spin-singlet case, we recover a strong pairing behavior.

1. Introduction

The advent of graphene [1] opened a door for exploration of new phenomena in two-
dimensional Dirac-like condensed matter systems. One of the intriguing questions is con-
cerned with superconducting correlations of electrons on the honeycomb lattice system.
Superconductivity has been induced in short graphene samples through proximity effect
with superconducting contacts [2]. This indicates that Cooper pairs can propagate coher-
ently in th graphene. In principle, superconductivity on the graphene honeycomb lattice
can be induced by short-range attractive interactions and explorations of allowed possibil-
ities were given in [3, 4, 5]. Among the most interesting is the so-called p+ ip supercon-
ducting instability introduced in [3]. It is supported by the most natural nearest-neighbor
attractive interaction and have distinct features of the Dirac electrons. Later, it has been
shown [5], by a restricted (low-energy) analysis, that this state may be less energetically
favorable with respect to Kekule-like order parameter arrangements. Nevertheless, the
p+ ip instability seems, though an exotic state, a very attractive possibility because of its
underlying symmetry of the order parameter, the same as for Pfaffian quantum Hall state
[6] or p+ip spinless superconductor [7]. The latter systems support non-Abelian statistics,
which is at the heart of the idea of the topological computing [8]. There is an important
difference between these states and the proposed graphene state. The superconducting
instability in graphene does not break time-reversal symmetry and those systems do. Due
to the valley degeneracy we effectively have two (p±ip) order parameters and this requires
additional understanding of intertwined correlations and underlying symmetries. One way,
just as in the Pfaffian state [7], is to look for the ground state wave function and recognize
the structures and symmetries.
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In this paper we derive an effective (long-distance) expression for the ground state
wave function of the p + ip spin-singlet instability described in Ref. 3 and display the
pertinent symmetries in this case. Also, a spinless case will be discussed. We will use the
BCS mean-field formalism. In the following section we will set up the BCS formalism,
solve the Bogoliubov - de Gennes (BdG) equations and find the expression for the ground
state wave functions. The last section is devoted to conclusions.

2. Superconductivity on honeycomb lattice and its ground states

The Hamiltonian for free electrons on the honeycomb lattice is

H0 = −t
X
hiji

X
σ=↑,↓

(a†i,σbj,σ + h.c.)− μ
X
i

n̂i, (1)

where t is the hopping energy between nearest neighbor C (carbon) atoms, ai,σ(a
†
i,σ) is

the on-site annihilation (creation) operator for electrons in the sublattice A with spin

σ =↑, ↓, and bi,σ(b
†
i,σ) for sublattice B, n̂i is the on-site number operator, and μ is the

graphene chemical potential. We use units such that h̄ = 1. Diagonalization of Eq.(1)
leads to a spectrum given by: ��k = ±t|S(�k)|, where �k is the two-dimensional momentum,
and S(�k) =

P
�δ
exp{i�k�δ} with �δ’s defined as δ1 = a(0, 1/

√
3), δ2 = a/2(1,−1/

√
3), and

δ3 = a/2(−1,−1/
√
3), and a =

√
3 acc, acc is the distance between C atoms and a is

the next to nearest neighbor distance. At the corners of the hexagonal Brillouin zone,
�K± = (2π)/a(2/3, 0), we have S( �K± + �k) ≈ ∓a

√
3/2(kx ∓ iky), and the band has the

shape of a Dirac cone: �( �K± + �k) = ±vF |�k|, where vF = (
√
3at)/2 is the Fermi-Dirac

velocity.
For the sake of simplicity we will consider only nearest-neighbor attractive interac-

tions among electrons. The on-site repulsive interactions can be introduced and will not
change our conclusions. Therefore the complete Hamiltonian will include nearest-neighbor
interactions as follows,

HI = g
X
hiji

X
σ,σ0

a†i,σai,σb
†
j,σ0

bj,σ0 , (2)

where g < 0. We will assume the spin-singlet pairing among nearest-neighbors and apply
the BCS ansatz with ∆ij = hai,↓bj,↑ − ai,↑bj,↓i, the superconducting order parameter.
Furthermore we assume one and the same ∆ij = ∆ for all nearest neighbors, which, due
to global gauge (U(1)) transformations on a’s and b’s, can be chosen real and positive.
The interaction part, HI , becomes

H̃BCS = {g
X
hiji
∆(a†i,↑b

†
j,↓ − a†i,↓b

†
j,↑) + h.c.}− 3g|∆|2. (3)

The order parameter in the momentum space is

∆�k
=
X
hiji
∆ exp{i�k(�i−�j)} = ∆

X
�δ

exp{i�k�δ} = ∆S(�k). (4)

Therefore nearK points∆ �K±+�k
∼ ∓(kx∓iky), which then describes two p-wave like super-

conducting order parameters in a low effective description. The complete BCS Hamiltonian
can be now cast in the following form in the momentum space,
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HBCS =
X
�k

φ†�kM�k
φ�k, (5)

where

φ†�k = (a
†
�k↑, b

†
�k↑a−�k↓, b−�k↓), (6)

with defined a�kσ =
P

i aiσ exp{i�k �i} and b�kσ =
P

i biσ exp{i�k �i}, and, with g∆ ≡ ∆ for
short,

M�k
=

⎡⎢⎢⎢⎢⎣
−μ −tS(�k) 0 ∆S(�k)

−tS∗(�k) −μ ∆S(−�k) 0

0 ∆S∗(−�k) μ tS(�k)

∆S∗(�k) 0 tS∗(�k) μ

⎤⎥⎥⎥⎥⎦ .
We look for the solution in the form of a diagonalized Bogoliubov BCS Hamiltonian,

HBCS =
X

�k,γ=±

ωα�k,γα
†
�k,γ

α�k,γ +
X

�k,γ=±

ωβ�k,γ
β†�k,γβ�k,γ +E0, (7)

where α�k,γ and β�k,γ , γ = ± are new quasiparticles at momentum �k. For the dispersions
we have:

ωα�k,γ = γωα�k and ωβ�k,γ
= γωβ�k

, (8)

where γ = ±. We define a general solution α as

α�k = u�k,↑a�k,↑ + v�k,↑b�k,↑ + u�k,↓a
†
−�k,↓ + v�k,↓b

†
−�k,↓. (9)

Next we have to solve the Bogoliubov - de Gennes (BdG) equations, which follow from
the following condition,

[α�k,HBCS] = Eα�k. (10)

From this matrix eigenvalue problem we obtain energies of the Bogoliubov quasiparticles,

ωp�k
= ±

q
(vF |S(�k)|+ pμ)2 + |∆S(�k)|2, (11)

where ± stands for the particle and hole branches respectively for two kinds of excitations
p = −1(α) and p = +1(β). For μ = 0 the system is gapless and we need a coupling g
larger than a critical value for the superconducting instability to exist [3]. This can be
found considering in the BCS formalism the consistency or gap equation.

For each valley we have to solve the Bogoliubov problem using the expansion
S( �K± + �k) ≈ ∓a

√
3/2(kx ∓ iky). Near K+ we need to diagonalize the following matrix,

M∗
�k
, that comes out from Eq. (10):⎡⎢⎢⎢⎣

−μ vFk 0 sk
vFk

∗ −μ sk∗ 0
0 sk μ −vFk
sk∗ 0 −vFk∗ μ

⎤⎥⎥⎥⎦ ,
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where s = s∗ = −∆a
√
3/2 > 0. Its eigenvectors (after normalization) enter the following

expressions for Bogoliubov quasiparticles:

α�k,+ =
1

2
p
Eα[Eα − (μ− vF |k|)]

{[Eα − (μ− vFk)](

s
k

k∗
a+↑ + b+↑) +

+ s|k|(
s

k

k∗
a†−↓ + b†−↓)}, (12)

and

β�k,+ =
1

2
q
Eβ[Eβ − (μ+ vF |k|)]

{[Eβ − (μ+ vFk)](

s
k

k∗
a+↑ − b+↑)−

− s|k|(
s

k

k∗
a†−↓ − b†−↓)}, (13)

and quasiholes:

α�k,− =
1

2
p
Eα[Eα + (μ− vF |k|)]

{−[Eα + (μ− vFk)](

s
k

k∗
a+↑ + b+↑) +

+ s|k|(
s

k

k∗
a†−↓ + b†−↓)}, (14)

and

β�k,− =
1

2
q
Eβ[Eβ + (μ+ vF |k|)]

{−[Eβ + (μ+ vFk)](

s
k

k∗
a+↑ − b+↑)−

− s|k|(
s

k

k∗
a†−↓ − b†−↓)}, (15)

for the Bogoliubov solution near point �K+, where we denoted a �K±±�k,σ ≡ a±σ and
b �K±±�k,σ ≡ b±σ.

The natural eigenstates of chirality appeared in our expressions. For example,

(
q

k
k∗a+↑ + b+↑) represents the spinor:

χ =

" q
k∗
k

1

#
, (16)

which is the eigenstate of the chirality operator �σ�k
|k| , defined with �σ = (σx, σy) Pauli matri-

ces, i.e. the pseudospin (due to two sublattices) is along the momentum vector. The state

(
q

k∗
k a−↓+b−↓) represents the same spinor because of the interchanged roles of sublattices
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at the �K− point. To see this in more detail we would like to remind the reader that instead
of the Dirac free electron representation by the spinor

χ†�k = (a
†
�K++�k,σ

, b†�K++�k,σ
b†�K−+�k,σ

, a†�K−+�k,σ
), (17)

and the chirality operator defined as ⎡⎣ �σ�k
|�k| 0

0 −�σ�k
|�k|

⎤⎦ , (18)

in the BdG formalism we work with

φ†�k = (a†�K++�k↑
, b†�K++�k↑

a �K−−�k↓, b �K−−�k↓)

≡ (a†+↑, b
†
+↑a−↓, b−↓). (19)

Note the reversed order of sublattices and the change of the sign of the momentum �k near
�K− point in the BdG formalism with respect to the free one. Thus, the lower 2×2 matrix
on the diagonal of the Hamiltonian matrix in the free Dirac case can be read off from:

h
b†�K−+�k,σ

a†�K−+�k,σ

i " −μ −vFk∗
−vFk −μ

# "
b �K−+�k,σ
a �K−+�k,σ

#
, (20)

i.e. it is equal to −vF�k�σ − μ. Note that if we change the sign of �k vector in Eq.(20)
i.e. �k → −�k the off-diagonal elements in the matrix will change the sign, so that in this
basis in the free representation the chirality operator will not have minus sign in the lower

right entry of the matrix representation in Eq.(18). Therefore, (
q

k∗
k a−↓+ b−↓) represents

the same spinor (up to a phase factor) as in Eq.(16) and the same chirality eigenstate
(with positive eigenvalue) as we pointed out earlier. Nevertheless, in the Bogoliubov
representation we still have

h
a−↓ b−↓

i " μ −vFk∗
−vFk μ

# "
a+−↓
b+−↓

#
, (21)

i.e. the matrix is −vF�k�σ+μ, and the representation of the chirality operator remains the
same as in Eq.(18). We will use this fact later on. On the other hand, the combinations

in Eqs. (13) and (15): (
q

k
k∗a+↑ − b+↑) and (

q
k∗
k a−↓ − b−↓) have the pseudospin vector

in the opposite direction of the momentum vector �k.
It is thus natural to introduce the following notation:

s
k

k∗
a+↑ + b+↑ ≡ c+↑v, (22)s

k

k∗
a†−↓ + b†−↓ ≡ c†−↓v, (23)s

k

k∗
a+↑ − b+↑ ≡ c+↑w, (24)
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−
s

k

k∗
a†−↓ + b†−↓ ≡ c†−↓w, (25)

where v and w denote the chirality, i.e. whether the pseudospin vector is along or in the
opposite direction with respect to the �k vector, respectively. We have to note that these

electron operators are defined up to a phase factor, most importantly, the
q

k
k∗ phase. This

degree of freedom should not influence the physics, but we chose the definitions so that the
symmetry under exchange of particles in the ground state wave function is transparent.

The α and β sectors are obviously decoupled in the Bogoliubov description, and we
can concentrate on and examine closely the α sector first. Furthermore, we do not have
to consider �K− point separately as the symmetry considerations tell us that the BdG
equations around this point will induce the coupling or states of an electron around �K+

point with ↓ projection of spin and those around �K− point with ↑ projection of spin.
Thus it suffices to consider the α sector first (with c+↑v and c−↓v) and then use the

symmetry arguments, more precisely antisymmetry under real spin exchange, to recover
the whole ground state wave function. We can rewrite α’s in the following form,

αk,+ = upkc+↑v + vpkc
†
−↓v, (26)

αk,− = uhkc+↑v + vhkc
†
−↓v. (27)

We should demand αk,+|Gi = 0 and α†k,−|Gi = 0, for any k, if |Gi is to represent the
ground state vector. That implies that in the α sector of �K+ point we have the following
contribution to the ground state,Y

k

(upk − vpkc
†
+↑vc

†
−↓v)|0i, (28)

where |0i denotes the vacuum. This state is annihilated with both, αk,+ and α†k,−. The
symmetry arguments demand that we should get a similar expression considering the BdG

equations at �K− point. If we denote by gα(k) = −
vp
k

upk
, the ground state vector in the α

sector should look like:

Y
k

(1 + gα(k)c
†
+↑vc

†
−↓v)(1 + gα(k)c

†
−↑vc

†
+↓v)|0i =

=
Y
k

{1 + gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v] +

g2α(k)

2
[c†+↑vc

†
−↓v + c†−↑vc

†
+↓v]

2|0i

= exp{
X
k

gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v]}|0i. (29)

Now we can identify gα(k) to represent a Fourier transform of the wave function of a
Cooper pair of electrons, which is a spin-singlet with respect to spin degree of freedom
and a triplet state (symmetric under exchange) with respect to the valley (K±) degree of
freedom. If we defined differently our electron operators, there would be the possibility

for gα(k) to acquire the phase factor
q

k
k∗ , which would make the identification of the

antisymmetry under exchange harder.
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Taking into account the β sector (with the chirality in the opposite direction of the
momentum: w) the complete ground state vector is

exp{
X
k

gα(k)[c
†
+↑vc

†
−↓v + c†−↑vc

†
+↓v] +

X
k

gβ(k)[c
†
+↑wc

†
−↓w + c†−↑wc

†
+↓w]}|0i, (30)

where

gα(k) = −
s|k|

Eα − (μ− vF |k|)
and gβ(k) = −

s|k|
Eα − (μ+ vF|k|)

. (31)

Using the long-distance (low-momentum) expansions for Eα and Eβ, for a finite μ,

Eα(β) ≈ μ∓ vF |k|+
s2|k|2
2μ

, (32)

we find the long-distance behavior of the pair wave function to be

lim
|�r|→∞

gα(�r) = lim
|�r|→∞

gβ(�r) ∼
1

|�r| , (33)

i.e. we have a case for a weak coupling [7]. As emphasized in Ref. 7, the term weak pairing
does not mean also weak coupling; it stands for a phase with an unusual large spread of
the Cooper pairs. On the other hand, for μ = 0 we have that gα(k) and gβ(k) are two
constants and the Cooper pairs are localized on a short scale ∼ a in the graphene system
at the neutrality point. Thus for μ = 0 we have a case for a strong pairing.

The ground state vector (wave function) in Eq.(30) displays two kinds of Cooper pairs,
each antisymmetric under combined exchange of (a) orbital, (b) valley ( �K±), and (c) spin
(↑, ↓) degree of freedom. Two kinds of Cooper pairs stem from the chirality (sublattice)
degree of freedom intimately connected with the Dirac-nature of the electron with both,
particles and holes. They both, particles (with positive chirality v at �K+) and holes
(with negative chirality w at �K+), constitute Cooper pairs, which are symmetric under
v ↔ w, vF → −vF transformation.

In the long distance limit we recover the form of the wave function of ordinary s-wave
superconductor as given in Ref. 9, though with more, two-component, degrees of freedom.
The Cooper pair wave function is antisymmetric under spin exchange and symmetric under
exchange of valley ( �K±), sublattice (v, w), and orbital degrees of freedom.

Next we will discuss the spin-triplet case, more precisely we will assume that the system
is spin-polarized and not consider spin in the following. Therefore, fermions are spinless
just like in the Pfaffian case, but they live on the honeycomb lattice. We will assume
haibji = ∆. In this case the Bogoliubov problem in Eq.(5) for the spin-singlet pairing
transforms into a similar one with a�k,σ ≡ a�k and b�k,σ ≡ b�k, and the matrix M�k

becomes
as follows

M�k
=

⎡⎢⎢⎢⎢⎣
−μ −tS(�k) 0 ∆S(�k)

−tS∗(�k) −μ −∆S(−�k) 0

0 −∆S∗(−�k) μ tS(�k)

∆S∗(�k) 0 tS∗(�k) μ

⎤⎥⎥⎥⎥⎦ .
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Around the �K+ point we have⎡⎢⎢⎢⎣
−μ vFk

∗ 0 sk∗

vFk −μ −sk 0
0 −sk∗ μ −vFk∗
sk 0 −vFk μ

⎤⎥⎥⎥⎦ ,

where s = −∆a
√
3
2 > 0 as before. The problem around the �K− point is a copy of the

problem around the �K+ point.

Now the M�k matrix around
�K+ point cannot be cast, as in the spin-singlet case, in

the following form, "
vF�σ�k − μI2 s�σ�k

s�σ�k −vF�σ�k + μI2

#
,

where I2 is the 2× 2 identity matrix, which commutes with the chirality matrix (Eq.18).
M�k

around �K+ point can be compactly written as"
vF�σ�k − μI2 si�k × �σ

−si�k × �σ −vF�σ�k + μI2

#
,

and it does not commute with the chirality operator. The eigenstates of the Bogoliubov
problem do not have to be the eigenstates of chirality. We find the following eigen-

values Ep = ±
r
μ2 + |�k|2s2 + |�k|2v2F + p 2

q
μ2v2F |�k|2 + s2v2F |�k|2, where p = +1(α) and

p = −1(β) are two branches as before. The associated eigenvectors can be written as
sums of fermionic particle eigenstates of chirality only at the low-momentum limit and we
list those connected with positive eigenvalues,

α�k,+ =
1q

2(1 + |k|2s2
4μ2

)
[
|k|s
2μ
(−
s

k

k∗
a+ + b+) + (

s
k

k∗
a†− + b†−)], (34)

and

β�k,+ =
1q

2(1 + |k|2s2
4μ2 )

[− |k|s
2μ
(

s
k

k∗
a+ + b+) + (−

s
k

k∗
a†− + b†−)], (35)

and negative eigenvalues,

α�k,− =
1q

2(1 + 4μ2

|k|2s2 )
[
2μ

|k|s(
s

k

k∗
a+ + b+) + (−

s
k

k∗
a†− + b†−)], (36)

and

β�k,− =
1q

2(1 + 4μ2

|k|2s2 )
[
2μ

|k|s(
s

k

k∗
a+ − b+) + (

s
k

k∗
a†− + b†−)]. (37)
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Similarly as before we can define s
k

k∗
a+ + b+ ≡ c+v, (38)s

k

k∗
a†− + b†− ≡ c†−v, (39)s

k

k∗
a+ − b+ ≡ c+w, (40)

−
s

k

k∗
a†− + b†− ≡ c†−w, (41)

and the ground state vector can be cast in the following form,

exp{
X
�k

2μ

s|k|(c
†
+,vc

†
−,w + c†+,wc

†
−,v)}|0i. (42)

In this case, each Cooper pair is antisymmetric under exchange of �K± points, i.e. valley
degree of freedom and symmetric under exchange of sublattices, i.e. chirality (v ↔ w).
Depending on our definitions for c’s two degrees of freedom can exchange the symmetry
properties. We find again the weak pairing (∼ 1

r ) behavior in the orbital part.

6. Conclusion

We derived the ground state wave functions for the superconductivity on the honey-
comb lattice induced by nearest-neighbor attractive interactions and with order parameter
independent of the direction to any of the nearest neighbors. Although the order para-
meter in momentum space has the p ± ip form in a low effective description the Cooper
pair wave function behaves as an s-wave (with no angular dependence) and decays as
∼ 1

r . Other (discrete) degrees of freedom combine to make the Cooper pair antisymmetric
under exchange. At the point of the transition, μ = 0, in the spin-singlet case, a strong
pairing (of the order of lattice spacing) occurs.
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